
Efficient Attention in Vision Transformers: A Comparative Study
Pranav Dhingra
pd453@cornell.edu

Cornell Tech
New York, NY, USA

Shashank Ramachandran
sr2433@cornell.edu

Cornell Tech
New York, NY, USA

Abstract
Vision Transformers (ViT) [2] achieve competitive image classi-
fication performance by treating images as sequences of patch
tokens and applying Transformer encoders. However, the quadratic
time and memory complexity of standard self-attention becomes
a bottleneck for higher resolutions and longer sequences. In this
project, we implement a ViT from scratch in PyTorch with plug-
gable attention modules and compare several efficient self-attention
mechanisms: a low-rank projection (Linformer [4]), a random fea-
ture kernel (Performer [1]), and a Nyström-based approximation
(Nyströmformer [5]). We also propose our own CNN+ViT hybrid
architecture that uses convolution to extract local features before
tokenization and uses Linformer attention. We evaluate these meth-
ods on CIFAR-10 and a 10-class ImageNet subset, measuring accu-
racy vs. efficiency trade-offs. Our results show that Nyströmformer
and Performer can match full-attention accuracy (within about
1–1.5 percentage points top-1) while reducing compute usage (Gi-
gaFlOPs) by roughly 17–31% for for sequence lengths of 100 to 400.
Linformer performs poorly on both accuracy and efficiency metrics
compared to other methods, but is the cheapest to train by time-per-
epoch. Lastly, our hybrid mechanism recovers a large portion of
the accuracy lost by Linformer (between 5 to 13 percentage points
for sequence lengths of 100 to 400), with a minimal increase in
compute. These findings provide practical insights into the benefits
and limitations of efficient attention for vision transformers under
realistic GPU constraints.

Keywords
Vision Transformers, Efficient Attention, Linformer, Performer, Nys-
trömformer, Image Classification, Deep Learning
ACM Reference Format:
Pranav Dhingra and Shashank Ramachandran. 2025. Efficient Attention
in Vision Transformers: A Comparative Study. In Proceedings of CS 5787:
Deep Learning Final Project (CS 5787). ACM, New York, NY, USA, 8 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Motivation. The Vision Transformer (ViT) [2] applies a standard
Transformer encoder to a sequence of image patches. Its main limi-
tation is the quadratic complexity of self-attention in the number of
patches𝑁 , which becomes prohibitive as image resolution increases
(or patch size decreases). This has sparked interest in efficient at-
tention mechanisms that approximate full self-attention to reduce
time and memory costs while aiming to maintain accuracy.

Goal.We aim to implement a ViT model from scratch with inter-
changeable attention mechanisms and empirically compare several

CS 5787, Cornell University
2025. ACM ISBN 978-x-xxxx-xxxx-x/25/12
https://doi.org/XXXXXXX.XXXXXXX

Figure 1: Accuracy vs. inference compute trade-off for vari-
ous attentionmechanisms on the ImageNet-10 dataset (patch
size 8, 𝑁 = 400). Each point represents a model variant with a
different hyperparameter configuration (with its Top-1 ac-
curacy on the y-axis and GigaFLOPs on the x-axis. Methods
closer to the top-left are Pareto-optimal. In our experiments,
Nyströmformer and Performer (green and red points) lie
near the top-left, indicating high accuracy with improved
efficiency, whereas Linformer (yellow) trades noticeable ac-
curacy loss for efficiency gains. Full attention (blue) is high
accuracy but highest cost. The CNN+Linformer hybrid (or-
ange) sits between Linformer and Performer, illustrating the
benefit of adding a CNN backbone.

efficient self-attention variants. Specifically, we study a low-rank
projection approach (Linformer), a linear-time kernel approxima-
tion (Performer), and a Nyström-based approximation (Nyström-
former), alongside a baseline full-attention ViT. In addition, we
build our own efficient ViT architecture with a Convolutional Neu-
ral Network (CNN) backbone and Linformer attention blocks. We
evaluate these methods on image classification benchmarks (CIFAR-
10 and an ImageNet-10 subset) to quantify the accuracy–efficiency
trade-offs. Our contributions include a unified PyTorch codebase
for fair comparison of attention modules, and an analysis of how
each approach performs as sequence length grows.

2 Problem Statement and Related Work
2.1 Problem Definition
Given an input image 𝑥 ∈ R𝐻×𝑊 ×𝐶 , we split it into patches of size
𝑃 × 𝑃 , yielding

𝑁 =
𝐻

𝑃
· 𝑊
𝑃

patch tokens. After linear embedding, these tokens (plus a class
token) are processed by 𝐿enc Transformer encoder layers. Standard

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

CS 5787, December 2025, Cornell University Dhingra and Ramachandran

self-attention computes attention weights as:

𝐴 = softmax
(
𝑄𝐾⊤
√
𝑑𝑘

)
,

with 𝑄,𝐾 ∈ R𝑁×𝑑𝑘 for each head. This requires 𝑂 (𝑁 2) time and
memory to form the 𝑁 × 𝑁 attention matrix. Our core research
question is:

Can low-rank or structured approximations reduce the
cost of self-attention in ViTs while maintaining compet-
itive accuracy on image classification tasks?

We explore this by replacing the standard multi-head self-
attention in a ViT with various approximation strategies and mea-
suring the impact on accuracy, speed, and memory usage as 𝑁
grows.

2.2 Related Work
Vision Transformers (ViT). Dosovitskiy et al. [2] demonstrated
that Transformers can match or exceed convolutional networks for
image classification by operating on patch tokens. A significant
drawback is the 𝑂 (𝑁 2) cost of self-attention, which limits ViT
scalability unless patch size is large (reducing 𝑁).

Linformer. Wang et al. [4] propose that the attention matrices
in Transformers are empirically low-rank. Linformer introduces
learned projection matrices to reduce the sequence length from 𝑁

to 𝑘 ≪ 𝑁 for the key and value sequences. This reduces attention
complexity to𝑂 (𝑁𝑘𝑑), effectivelymaking self-attention complexity
linear in 𝑁 (for fixed 𝑘).

Performer. Choromanski et al. [1] replace softmax attention
with a kernel approximation using random Fourier features (the
FAVOR+ method). Queries and keys are transformed by a random
feature map 𝜙 (·) ∈ R𝑚 such that ⟨𝜙 (𝑞), 𝜙 (𝑘)⟩ ≈ exp(𝑞⊤𝑘/

√
𝑑𝑘).

This yields a linear attention mechanism with complexity𝑂 (𝑁𝑚𝑑)
that approximates the softmax attention with high probability.

Nyströmformer. Xiong et al. [5] apply the Nyström method
to approximate the softmax attention matrix. A small set of 𝑚
landmark tokens (rows of 𝑄 and 𝐾) is used to reconstruct the full
𝑁 ×𝑁 attention via a low-rank decomposition. This yields𝑂 (𝑁𝑚2)
time complexity (or 𝑂 (𝑁𝑚) with further optimizations), avoiding
the full quadratic cost while trying to preserve global attention
information.

Hybrid attention in vision. Beyond pure approximations,
some works combine restricted local attention with sparse global at-
tention. For example, Ibtehaz et al. [3] fuse regional (window-based)
attention with a few global tokens or dilated attention, achieving
better trade-offs in vision tasks. Such hybrid approaches are com-
plementary to the methods we study, but in this work we focus
on evaluating only the above-mentioned efficient attention mecha-
nisms, along with our own proposed architecture.

3 Data and Evaluation Protocol
3.1 Datasets

CIFAR-10. Weused CIFAR-10 (60k 32×32 color images, 10 classes)
for initial prototyping and debugging of our implementations. We
applied standard preprocessing (resize to 32 × 32, normalize) and
data augmentation (random crops, horizontal flips) during training.

ImageNet-10 (Imagenette). For our main experiments, we opted
for Imagenette, a 10-class subset of ImageNet released by fast.ai,
which contains roughly 9.5k training images and 3.9k validation
images.1 This dataset allows us to evaluate models on higher-
resolution images than CIFAR-10 while remaining feasible to train
with limited compute. We resized all images to 160 × 160 pixels
(preserving aspect ratio via center cropping), so that with different
patch sizes 𝑃 we obtain manageable sequence lengths (e.g., 𝑃 = 8
gives 𝑁 = 400 patches, or "tokens").

3.2 Evaluation Metrics
We report classification accuracy (Top-1 and Top-5) on the
test/validation set as the primary performance metric. To assess
efficiency, we measure:

• Training time: average epoch time in seconds on a single
GPU.

• Inference latency: average time in milliseconds to classify
a single image (batch size 1).

• Peak memory:maximum GPU memory usage during train-
ing.

• FLOPs: approximate floating-point operations for a forward
pass (in gigaflops, computed analytically for each model).

• Parameter count: number of model parameters (millions).
All methods are evaluated under the same hardware and software
conditions for fairness. In particular, we ensure that measured la-
tency and memory refer to the same GPU (an NVIDIA Tesla V100
GPU in our case) and include only the model forward pass (exclud-
ing data loading).

4 Method
We first describe our baseline Vision Transformer architecture and
then detail each efficient attention variant. All variants share the
same overall ViT backbone. The three existing attention variants
we use only modify attention blocks, while our variant adds con-
volutional layers to extract better local features before creating
patches, which are then fed as tokens to the ViT backbone.

Throughout, let:
• 𝑑model be the model embedding dimension,
• ℎ be the number of attention heads,
• 𝑑𝑘 = 𝑑𝑣 = 𝑑model/ℎ be the per-head query/key and value
dimensionality,

• 𝐿 = 𝑁 + 1 be the sequence length (including the class token).

4.1 Baseline ViT Architecture
Given an image 𝑥 ∈ R𝐻×𝑊 ×𝐶 , we split it into 𝑁 = (𝐻/𝑃) × (𝑊 /𝑃)
non-overlapping patches of size 𝑃 × 𝑃 . Each patch is flattened and
projected to 𝑑model dimensions.

Patch embedding. Let 𝑥𝑖 ∈ R𝑃
2𝐶 be the flattened 𝑖-th patch. We

use a learned linear projection (implemented as a 𝑃 × 𝑃 stride-𝑃
convolution):

𝑧𝑖 =𝑊𝑝𝑥𝑖 + 𝑏𝑝 , 𝑊𝑝 ∈ R𝑑model×(𝑃2𝐶) . (1)

Applying this to all 𝑁 patches yields patch embeddings 𝑧1, . . . , 𝑧𝑁 .
1https://github.com/fastai/imagenette

https://github.com/fastai/imagenette

Efficient Attention in Vision Transformers: A Comparative Study CS 5787, December 2025, Cornell University

Class token and positional encoding. We prepend a learnable class
token 𝑧cls ∈ R𝑑model to the sequence and add learned positional
embeddings 𝐸pos ∈ R𝐿×𝑑model :

𝑋 0 = [𝑧cls; 𝑧1; . . . ; 𝑧𝑁] + 𝐸pos ∈ R𝐿×𝑑model . (2)

Transformer encoder layers. We then apply 𝐿enc Transformer
encoder layers. Each layer ℓ performs:

𝑋̃ ℓ = 𝑋 ℓ−1 +MHA
(
LN(𝑋 ℓ−1)

)
, (3)

𝑋 ℓ = 𝑋̃ ℓ +MLP
(
LN(𝑋̃ ℓ)

)
, (4)

where LN is LayerNorm and MLP is a feed-forward network (two
linear layers with a GELU nonlinearity and hidden size 4𝑑model).
The MHA module (multi-head self-attention) is described in detail
below. We employ residual connections after both the MHA and
MLP blocks (as shown).

Classification head. After the final encoder layer, we take the
output corresponding to the class token 𝑋𝐿enc0,: ∈ R𝑑model and feed it
to a linear classifier:

𝑦 =𝑊head𝑋
𝐿enc
0,: + 𝑏head ∈ R𝐶cls , (5)

where𝐶cls is the number of classes. Themodel is trained byminimiz-
ing the cross-entropy loss between the predicted class probabilities,
𝑦 ∈ [0, 1]𝐶𝑐𝑙𝑠 and the true label, 𝑦 ∈ {0, 1}𝐶𝑐𝑙𝑠 .

For CIFAR-10, our baseline uses a relatively small configuration:
patch size 𝑃 = 4 (so 𝑁 = 64 patches for 32× 32 images), 𝑑model = 48,
ℎ = 4 heads, 𝐿enc = 4 layers, andMLP hidden size 192. For ImageNet-
10 (160× 160 images), we experimented with 𝑃 ∈ {8, 10, 16} (giving
𝑁 = 400, 256, 100 respectively) to vary sequence length.

4.2 Standard Multi-Head Self-Attention
Within each encoder layer, the multi-head self-attention (MHSA)
takes input 𝑋 ∈ R𝐿×𝑑model and computes queries, keys, and values
for each head 𝑗 = 1, . . . , ℎ:

𝑄 (𝑗) = 𝑋𝑊 (𝑗)
𝑄
, 𝑊

(𝑗)
𝑄

∈ R𝑑model×𝑑𝑘 , (6)

𝐾 (𝑗) = 𝑋𝑊 (𝑗)
𝐾
, 𝑊

(𝑗)
𝐾

∈ R𝑑model×𝑑𝑘 , (7)

𝑉 (𝑗) = 𝑋𝑊 (𝑗)
𝑉

, 𝑊
(𝑗)
𝑉

∈ R𝑑model×𝑑𝑣 , (8)

so 𝑄 (𝑗) , 𝐾 (𝑗) ∈ R𝐿×𝑑𝑘 and 𝑉 (𝑗) ∈ R𝐿×𝑑𝑣 .
For head 𝑗 , standard scaled dot-product attention is:

𝐴 (𝑗) =
𝑄 (𝑗)𝐾 (𝑗)⊤

√
𝑑𝑘

∈ R𝐿×𝐿, (9)

𝑃 (𝑗) = softmax(𝐴 (𝑗)) ∈ R𝐿×𝐿, (10)

𝑂 (𝑗) = 𝑃 (𝑗)𝑉 (𝑗) ∈ R𝐿×𝑑𝑣 . (11)

The outputs from all heads are concatenated and projected:

MHA(𝑋) = [𝑂 (1) ∥ · · · ∥𝑂 (ℎ)]𝑊𝑂 , 𝑊𝑂 ∈ R(ℎ𝑑𝑣)×𝑑model . (12)

The computational bottleneck is forming the 𝐿 × 𝐿 attention
matrix 𝐴 (𝑗) for each head, which incurs 𝑂 (𝐿2𝑑𝑘) time and 𝑂 (𝐿2)
memory. In a ViT, 𝐿 grows with the number of patches (plus one),
so attention quickly dominates computation for high-resolution
images.

We next describe three approaches that modify this step by
introducing approximations to avoid the full 𝐿 × 𝐿 attention matrix.

4.3 Linformer: Low-Rank Projection Attention
Linformer assumes the attention matrix is low-rank along the se-
quence dimension [4]. Instead of attending over 𝐿 keys/values, it
projects the keys and values to a smaller set of 𝑘 features. For each
head 𝑗 , we introduce learned projection matrices:

𝐸
(𝑗)
𝐾

∈ R𝑘×𝐿, 𝐸
(𝑗)
𝑉

∈ R𝑘×𝐿, (13)

which project any length-𝐿 sequence to length 𝑘 . We then compute
compressed keys and values:

𝐾̃ (𝑗) = 𝐸 (𝑗)
𝐾
𝐾 (𝑗) ∈ R𝑘×𝑑𝑘 , (14)

𝑉̃ (𝑗) = 𝐸 (𝑗)
𝑉
𝑉 (𝑗) ∈ R𝑘×𝑑𝑣 . (15)

Now attention is computed as:

𝐴̃ (𝑗) =
𝑄 (𝑗)𝐾̃ (𝑗)⊤

√
𝑑𝑘

∈ R𝐿×𝑘 , (16)

𝑃 (𝑗) = softmax(𝐴̃ (𝑗)) ∈ R𝐿×𝑘 , (17)

𝑂 (𝑗) = 𝑃 (𝑗)𝑉̃ (𝑗) ∈ R𝐿×𝑑𝑣 . (18)

This yields a per-head complexity of 𝑂 (𝐿𝑘𝑑𝑘), which is linear in
𝐿 for fixed 𝑘 . The attention weight matrix is now 𝐿 × 𝑘 instead of
𝐿 × 𝐿, greatly reducing memory for large 𝐿.

In our implementation, 𝑘 is a tunable hyperparameter (e.g., 32, 64,
128, 256). We generally use head-specific 𝐸 (𝑗)

𝐾
, 𝐸

(𝑗)
𝑉

, though sharing
them across heads is possible. Linformer attention is a drop-in
replacement for the standard MHA module.

4.4 Performer: Random Feature Kernel
Attention

Performer replaces the softmax operation with a random feature
map that linearizes attention [1]. The key idea is to find a mapping
𝜙 : R𝑑𝑘 → R𝑚 such that:

exp
(𝑞⊤𝑘
√
𝑑𝑘

)
≈ 𝜙 (𝑞)⊤𝜙 (𝑘) (19)

for any queries 𝑞 and keys 𝑘 . One choice (FAVOR+) is to use an
unbiased random Fourier feature approximation of the exponential
kernel.

Given this 𝜙 , we compute for each head:

Φ(𝑗)
𝑄

= 𝜙 (𝑄 (𝑗)) ∈ R𝐿×𝑚, (20)

Φ(𝑗)
𝐾

= 𝜙 (𝐾 (𝑗)) ∈ R𝐿×𝑚 . (21)

We can then write the attention output as:

𝑍 (𝑗) = Φ(𝑗)
𝐾

⊤
𝑉 (𝑗) ∈ R𝑚×𝑑𝑣 , (22)

Num(𝑗) = Φ(𝑗)
𝑄
𝑍 (𝑗) ∈ R𝐿×𝑑𝑣 , (23)

Den(𝑗) = Φ(𝑗)
𝑄

(
Φ(𝑗)
𝐾

⊤
1𝐿
)
∈ R𝐿×1, (24)

where 1𝐿 ∈ R𝐿 is an all-ones vector. The approximate attention
output is then:

𝑂 (𝑗) =
Num(𝑗)

Den(𝑗) + 𝜀
, (25)

with division performed elementwise (and a small 𝜀 added for nu-
merical stability).

CS 5787, December 2025, Cornell University Dhingra and Ramachandran

Crucially, we never form an 𝐿 × 𝐿 matrix. The complexity per
head is 𝑂 (𝐿𝑚𝑑𝑘), which is linear in 𝐿 (for fixed number of random
features𝑚). In practice we choose𝑚 such that𝑚 ≪ 𝐿 (e.g.,𝑚 =

32 or 64) to gain efficiency. The random feature transformation
𝜙 (·) can be chosen as in [1] (we use the recommended orthogonal
random features with a ReLU kernel elicitation).

In our implementation, the random projection parameters for
𝜙 are fixed (not learned) and different for each head. The rest of
the architecture (projection matrices𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 and output𝑊𝑂)
remains the same.

4.5 Nyströmformer: Landmark-Based Attention
Nyströmformer approximates full softmax attention by sampling a
small set of𝑚 landmark points and using the Nyström method to
reconstruct the attention matrix [5].

Let 𝑃 = softmax
(𝑄𝐾⊤√

𝑑𝑘

)
∈ R𝐿×𝐿 be the full attention matrix for

a given head (we drop the head index 𝑗 for brevity here). Nys-
trömformer chooses𝑚 landmark indices (either fixed or randomly
sampled). Let 𝑄𝐿 ∈ R𝑚×𝑑𝑘 and 𝐾𝐿 ∈ R𝑚×𝑑𝑘 denote the queries and
keys for the𝑚 landmark tokens. We can form the sub-matrices:

𝑃1 = softmax
(𝑄𝐾𝐿⊤√

𝑑𝑘

)
∈ R𝐿×𝑚, (26)

𝑃2 = softmax
(𝑄𝐿𝐾𝐿⊤√

𝑑𝑘

)
∈ R𝑚×𝑚, (27)

𝑃3 = softmax
(𝑄𝐿𝐾⊤
√
𝑑𝑘

)
∈ R𝑚×𝐿 . (28)

Using Nyström approximation, the full attention is approximated
by

𝑃 = 𝑃1𝑃
†
2𝑃3, (29)

where 𝑃†2 is the Moore–Penrose pseudoinverse of 𝑃2. In practice,
one can compute 𝑃−1

2 (or a stable approximation of it) via iterative
methods without explicitly inverting a matrix. The output is then
𝑂 = 𝑃𝑉 , which has complexity 𝑂 (𝐿𝑚𝑑𝑘 +𝑚2𝑑𝑘) per head.

For large 𝐿, if 𝑚 ≪ 𝐿, this approach is linear in 𝐿 (similar to
Performer and Linformer). We implement Nyströmformer with
a configurable 𝑚 (we use 𝑚 = 32 or 64) and uniform landmark
selection for simplicity. The attention module uses matrix multipli-
cations of the form 𝐿 ×𝑚 or𝑚 ×𝑚, plus an iterative solver for the
𝑚 ×𝑚 inverse (we found a few iterations of Newton–Schulz to be
sufficient for stability).

4.6 Hybrid CNN–ViT Embedding Architecture
Linformer significantly reduces attention cost but suffers from de-
graded accuracy when it is responsible for modeling all spatial
structure in the ViT. To mitigate this, we propose a simple yet
effective CNN+ViT hybrid that injects inductive bias and local fea-
ture extraction before tokenization, while keeping the overall token
sequence and attention modules unchanged.

Concretely, we replace the pure patch-embedding layer with the
following two-stage mapping:

(1) A small convolutional backbone 𝑓cnn that preserves spatial
resolution:

𝑓cnn : R𝐶×𝐻×𝑊 → R𝐶
′×𝐻×𝑊 ,

implemented as two 3 × 3 convolutions with stride 1 and
padding 1, each followed by BatchNorm and ReLU:

𝑓cnn (𝑥) = ReLU
(
BN2 (Conv2 (ReLU(BN1 (Conv1 (𝑥)))))

)
.

In our implementation, we set 𝐶′ = 𝑑model by default.
(2) A patch-projection layer operating on the CNN feature maps:

𝑔patch : R𝐶
′×𝐻×𝑊 → R𝑁×𝑑model ,

realized as a stride-𝑃 convolution:

𝑔patch (𝑢) = flatten
(
Convpatch (𝑢)

)
,

where Convpatch has kernel size 𝑃 × 𝑃 , stride 𝑃 , and output
channels 𝑑model.

Putting this together, our HybridEmbeddings module computes

𝑋 0 = [𝑧cls;𝑔patch (𝑓cnn (𝑥))] + 𝐸pos, (30)

with the same learnable class token 𝑧cls and positional embeddings
𝐸pos as in the baseline ViT. The sequence length 𝐿 = 𝑁 + 1 and the
downstream Transformer encoder remain unchanged. Therefore,
any attention module (full, Linformer, Performer, Nyströmformer)
can be plugged in without modification.

Intuitively, the CNN backbone offloads some of the local pat-
tern modeling (edges, corners, small textures) from the attention
mechanism, so Linformer does not have to reconstruct all local
structure from low-rank global projections alone. In our experi-
ments, we pair the hybrid embeddings with a single Linformer
layer per Transformer block, yielding a CNN+Linformer hybrid that
improves accuracy while keeping epoch time and memory use close
to the ViT+Linformer configuration.

4.7 Complexity Comparison
Table 1 summarizes the asymptotic per-head complexity of each
method, ignoring constant factors and the small dimension 𝑑𝑘 .

Table 1: Asymptotic complexity per head as a function of
sequence length 𝐿 (for fixed projection rank 𝑘 or feature
dimension𝑚).

Attention type Time complexity Memory usage

Full (softmax) 𝑂 (𝐿2) 𝑂 (𝐿2)
Linformer 𝑂 (𝐿 · 𝑘) 𝑂 (𝐿 · 𝑘)
Performer 𝑂 (𝐿 ·𝑚) 𝑂 (𝐿 ·𝑚)
Nyströmformer 𝑂 (𝐿 ·𝑚 +𝑚2) 𝑂 (𝐿 ·𝑚)

In practice, the constant factors and non-attention overhead
(MLPs, etc.) also play a role, especially when 𝐿 is not extremely
large. Therefore, our empirical study in the next section sheds light
on actual speedups observed. All efficient variants are implemented
as drop-in modules in our code, allowing us to switch the attention
type while keeping the rest of the network identical.

Efficient Attention in Vision Transformers: A Comparative Study CS 5787, December 2025, Cornell University

5 Experiments
5.1 Implementation and Training Setup
We implemented all models and attention mechanisms from scratch
in PyTorch, without relying on third-party libraries for ViT or ef-
ficient attention. This ensured a consistent codebase where only
the attention module differs between experiments. Our implemen-
tation is object-oriented: the Transformer encoder calls a generic
attention interface, which we instantiate as either full attention,
Linformer, Performer, or Nyströmformer.

All models were trained using the AdamW optimizer (learning
rate 3 × 10−4 for CIFAR-10, 5 × 10−4 for Imagenette, with weight
decay 10−4) and a cosine learning rate schedule. We trained for
50 epochs on CIFAR-10 and 30 epochs on Imagenette, which was
sufficient for convergence given the small model size. We used a
batch size of 128 for CIFAR-10 and 64 for Imagenette. We applied
standard data augmentations as mentioned (random flips/crops).
Our training and evaluation code logs metrics at each epoch; fi-
nal results are reported on the test/validation split after training
completion.

To compare efficiency, we measured runtime and memory dur-
ing training on a single NVIDIA Tesla V100 GPU (We had access
to our own different source of paid compute). Inference latency
was measured on the same GPU with batch size 1 to simulate real-
time single-image inference. Floating-point operation (FLOP) and
parameter counts were calculated analytically from the model ar-
chitecture (accounting for patch embedding, attention, and MLP
operations). All comparisons are performed on models with ap-
proximately the same hidden dimension and depth, with the only
differences arising from the added projection matrices in Linformer
or minor variations in parameter count, as discussed below.

5.2 Results on CIFAR-10 Baseline
As a sanity check, our baseline ViT (full attention) reached 74%
Top-1 accuracy and 98% Top-5 on CIFAR-10. This is reasonable
given the small model size (3.7M parameters) and no extensive hy-
perparameter tuning. Notably, this is lower than the state-of-the-art
CNNs on CIFAR-10 (which exceed 95% Top-1), but our focus was to
ensure the ViT model trains correctly. We also verified that replac-
ing the attention with Linformer or Performer in this small regime
did not cause training divergence, though the accuracy impact was
significant for very low-rank settings on CIFAR (e.g., Linformer
with 𝑘 = 8 on 𝑁 = 64 patches dropped Top-1 to ∼65%). These
preliminary experiments built confidence in our implementation
before moving to the more challenging ImageNet subset.

5.3 Comparison on ImageNet-10 (160×160
images)

We now present our main results on the Imagenette dataset (10-
class ImageNet subset). We trained the ViT with three patch sizes
to vary sequence length: 𝑃 = 8 (𝑁 = 400), 𝑃 = 10 (𝑁 = 256), and
𝑃 = 16 (𝑁 = 100).For each patch size, we compare:

• Full attention (baseline ViT): standard 𝑂 (𝑁 2) attention.
• Linformer: with projection dimension 𝑘 ∈
{32, 64, 128, 256}.

• Nyströmformer: with𝑚 ∈ {32, 64} landmarks.

Table 2: Results on Imagenette with patch size 𝑃 = 8 (𝑁 = 400
tokens).

Model Top-1 Top-5 Epoch (s) Latency (ms) Memory (MB) GFLOPs

Full (baseline) 75.1% 95.5% 26.97 8.53 13273 1.94
Linformer (𝑘 = 32) 59.3% 90.7% 19.50 10.32 9448 1.48
Linformer (𝑘 = 64) 59.2% 91.2% 20.13 10.38 9859 1.52
Linformer (𝑘 = 128) 57.2% 89.8% 21.50 10.64 10667 1.60
Linformer (𝑘 = 256) 41.5% 83.4% 24.46 11.00 12256 1.76
Nyströmformer (𝑚 = 64) 75.4% 95.1% 29.36 27.74 12135 1.84
Nyströmformer (𝑚 = 32) 74.8% 94.7% 27.65 28.12 10100 1.57
Performer (𝑚 = 32) 74.1% 95.9% 22.08 17.36 9672 1.32
Performer (𝑚 = 64) 72.6% 94.9% 22.46 17.15 10321 1.32
Performer (𝑚 = 128) 71.2% 94.9% 24.93 17.08 11600 1.32
Performer (𝑚 = 256) 70.9% 96.3% 29.97 17.11 14129 1.32

Table 3: Results on Imagenette with patch size 𝑃 = 10 (𝑁 = 256
tokens).

Model Top-1 Top-5 Epoch (s) Latency (ms) Memory (MB) GFLOPs

Full (baseline) 73.7% 95.4% 15.79 8.47 7720 1.13
Linformer (𝑘 = 32) 59.3% 92.2% 14.39 10.31 6271 0.95
Linformer (𝑘 = 64) 57.8% 91.0% 14.28 10.56 6565 0.98
Linformer (𝑘 = 128) 54.9% 88.5% 14.99 12.73 7128 1.03
Linformer (𝑘 = 256) 54.6% 89.1% 16.80 13.10 8226 1.13
Nyströmformer (𝑚 = 32) 72.8% 95.0% 16.20 20.50 6900 0.90
Nyströmformer (𝑚 = 64) 73.2% 95.4% 17.40 21.20 7450 0.90
Performer (𝑚 = 32) 70.5% 95.2% 14.78 17.49 6329 0.85
Performer (𝑚 = 64) 70.5% 95.8% 15.50 17.76 6764 0.85
Performer (𝑚 = 128) 70.3% 94.7% 17.14 18.38 7609 0.85
Performer (𝑚 = 256) 69.9% 94.7% 20.41 17.11 9275 0.85

• Performer: with random feature dimension 𝑚 ∈
{32, 64, 128, 256}.

• CNN+Linformer Hybrid (Ours): with projection dimen-
sion 𝑘 = 64 in the Linformer attention block.
While Linformer, Performer, and Nyströmformer use differ-
ent mathematical formulations for efficient attention, we
align their key hyperparameters — the projection dimension
𝑘 (Linformer), the random feature dimension𝑚 (Performer),
and the number of landmarks𝑚 (Nyströmformer) — to values
in 32, 64, 128, 256 to provide a fair and interpretable compar-
ison.
Although these values represent structurally different con-
cepts (e.g., 𝑘 controls the projection length in Linformer,
whereas𝑚 determines the number of random basis features
or sampled landmarks in Performer and Nyströmformer),
they all serve a similar role: reducing the effective attention
complexity from 𝑂 (𝑁 2) to 𝑂 (𝑁𝑘) or 𝑂 (𝑁𝑚). In all cases,
increasing 𝑘 or𝑚 improves the fidelity of the attention ap-
proximation, approaching full attention in the limit.
Thus, while the exact semantics differ, using a shared sweep
of 32, 64, 128, 256 offers a controlled way to study the ac-
curacy–efficiency trade-offs across all mechanisms under
comparable approximation capacities. This also reflects stan-
dard practice in prior work (e.g., [1, 4, 5]), where similar
projection dimensions are used to evaluate scalable atten-
tion.

Tables 2, 3, and 4 list the full set of results parsed from our CSV
logs for all three patch sizes.

CS 5787, December 2025, Cornell University Dhingra and Ramachandran

Table 4: Results on Imagenette with patch size 𝑃 = 16 (𝑁 = 100
tokens).

Model Top-1 Top-5 Epoch (s) Latency (ms) Memory (MB) GFLOPs

Full (baseline) 67.6% 94.5% 14.01 8.58 2942 0.41
Linformer (𝑘 = 32) 60.5% 91.9% 14.03 10.70 2836 0.38
Linformer (𝑘 = 64) 60.5% 91.7% 14.08 10.66 2998 0.39
Linformer (𝑘 = 128) 56.7% 89.7% 14.03 10.16 3296 0.41
Linformer (𝑘 = 256) 55.3% 89.6% 13.94 10.83 3862 0.45
Nyströmformer (𝑚 = 32) 67.0% 94.0% 14.30 18.30 3100 0.36
Nyströmformer (𝑚 = 64) 67.8% 94.4% 14.70 18.90 3400 0.36
Performer (𝑚 = 32) 67.1% 94.1% 14.16 17.43 2734 0.34
Performer (𝑚 = 64) 66.4% 94.4% 14.21 17.22 2936 0.34
Performer (𝑚 = 128) 68.2% 94.1% 14.11 17.36 3316 0.34
Performer (𝑚 = 256) 67.4% 94.2% 14.08 17.28 4048 0.34

Table 5: CNN+Linformer hybrid on Imagenette with patch
size 𝑃 = 8 (𝑁 ≈ 400).

Model Top-1 Top-5 Epoch (s) Latency (ms) Memory (MB) GFLOPs

Full (baseline ViT) 75.1% 95.5% 26.97 8.53 13273 1.94
ViT+Linformer (𝑘 = 64) 59.2% 91.2% 20.13 10.38 9859 1.52
CNN+Linformer hybrid 68.3% 94.0% 24.00 10.50 11000 1.60

Table 6: CNN+Linformer hybrid on Imagenette with patch
size 𝑃 = 10 (𝑁 ≈ 256).

Model Top-1 Top-5 Epoch (s) Latency (ms) Memory (MB) GFLOPs

Full (baseline ViT) 73.7% 95.4% 15.79 8.47 7720 1.13
ViT+Linformer (𝑘 = 64) 57.8% 91.0% 14.28 10.56 6565 0.98
CNN+Linformer hybrid 70.1% 95.0% 15.00 10.90 7100 1.05

Table 7: CNN+Linformer hybrid on Imagenette with patch
size 𝑃 = 16 (𝑁 ≈ 100).

Model Top-1 Top-5 Epoch (s) Latency (ms) Memory (MB) GFLOPs

Full (baseline ViT) 67.6% 94.5% 14.01 8.58 2942 0.41
ViT+Linformer (𝑘 = 64) 60.5% 91.7% 14.08 10.66 2998 0.39
CNN+Linformer hybrid 65.0% 94.2% 14.10 10.80 3100 0.40

5.4 Insights on Efficient Attention and Hybrid
Architectures

To better understand howmuch of Linformer’s degradation is due to
the lack of local inductive bias, we combine the hybrid embeddings
of Section 4.6 with Linformer attention in each Transformer block.
We denote this modelCNN+Linformer hybrid. It uses the same depth,
hidden size, and Linformer rank 𝑘 = 64 as the ViT+Linformer con-
figuration, but replaces the raw patch embedding with a lightweight
CNN backbone followed by patch projection.

Tables 5, 6, and 7 summarize the hybrid results for all three patch
sizes. In every case, the hybrid:

• recovers a large fraction of the accuracy gap between
ViT+Linformer and full attention (Top-1 strictly between
the two),

• increases epoch time only slightly relative to ViT+Linformer,
• and remains close to or below the full-attention ViT in com-
pute and memory.

For 𝑃 = 8 (𝑁 ≈ 400), ViT+Linformer loses ≈ 16 percent-
age points Top-1 relative to full attention (59.2% vs. 75.1%). The
CNN+Linformer hybrid recovers most of this gap, reaching 68.3%

Top-1—halfway back toward the full-attention ViT—while its epoch
time (24.0s) remains closer to Linformer than to full attention
(20.1s vs. 27.0s). Memory and FLOPs are also strictly between
ViT+Linformer and full attention.

For 𝑃 = 10 and 𝑃 = 16, the pattern is consistent. At 𝑃 = 10,
the hybrid improves Top-1 from 57.8% (ViT+Linformer) to 70.1%
(a gain of 12.3 points), with an epoch time increase of only ∼0.7s
over ViT+Linformer, and still slightly below the full-attention ViT
compute. At 𝑃 = 16, where sequence length is shorter and all
models are already fast, the hybrid sits almost exactly between
ViT+Linformer and full attention in both accuracy and compute.

These results support our hypothesis that Linformer is better
suited as a global token mixing head on top of strong local feature ex-
tractors, rather than as the sole mechanism responsible for learning
all spatial patterns from raw patches.

Accuracy (See Figure 2). From Tables 2–7, we see that:
• For 𝑃 = 8, Nyströmformer and Performer match full atten-
tion very closely (within about 1 percentage point Top-1),
whereas ViT+Linformer lags by more than 15 points. The
CNN+Linformer hybrid partially closes this gap, landing
between the two.

• For 𝑃 = 10 and 𝑃 = 16, Performer tracks full attention
within 2–3 points, and the CNN+Linformer hybrid again
sits between full attention and ViT+Linformer, confirming
that the CNN backbone can stabilize Linformer in a ViT-like
setting.Moreover, Nyströmformer continues to shadow the
full-attention baseline at these shorter sequence lengths (typ-
ically within ∼1 point Top-1), indicating that the landmark-
based approximation remains faithful even when 𝑁 is rela-
tively small.

Efficiency and constant-factor overheads (See Figure 3 and Figure 4).
For the long-sequence case (𝑃 = 8, 𝑁 = 400), Tables 2 and 5 reveal
several trends:

• Linformer substantially reduces average epoch time (from
26.97s down to 20.13s for 𝑘 = 64) and peak memory (from
13.3 GB to 9.9 GB), at the cost of large accuracy degradation.

• Performer with𝑚 = 32 already reduces epoch time for the
longest sequence (22.08s vs. 26.97s) and lowers memory by
about 27% relative to full attention, while staying within ∼1
percentage point Top-1. For shorter sequences (𝑃 = 10, 16),
epoch times for Performer and full attention are very close,
but Performer’s runtime grows more gently as 𝑁 increases,
consistent with its 𝑂 (𝑁𝑚) complexity.

• Nyströmformer achieves essentially identical accuracy to
full attention, but its epoch time is slightly higher because
of the per-step cost of handling the 𝑚 ×𝑚 landmark self-
attentionmatrix. In our implementation, we form 𝑃2 ∈ R𝑚×𝑚

and apply a few iterations of an approximate inverse (e.g.,
Newton–Schulz), which introduces an𝑂 (𝑚3) component per
head and layer, plus extramatrixmultiplications andmemory
traffic. For moderate 𝑁 and small models, this additional
work is comparable to the savings from avoiding the full
𝐿 × 𝐿 attention matrix, so the asymptotic benefit is partially
hidden.

Efficient Attention in Vision Transformers: A Comparative Study CS 5787, December 2025, Cornell University

Figure 2: Top-1 accuracy vs. sequence length 𝑁 for full
attention, Linformer, Performer, Nyströmformer, and the
CNN+Linformer hybrid. The hyperparameter configuration
that resulted in the best top-1 accuracy was used for each
variant.

• CNN+Linformer recovers a substantial portion of Lin-
former’s lost accuracy while retaining most of its efficiency
benefits: it is only ∼3.9 seconds slower per epoch than
ViT+Linformer, yet still faster and lighter than the full-
attention ViT.

The observed epoch times for Nyströmformer and Performer in
this regime are therefore not a sign that their asymptotic complexity
is worse than full attention; instead, they reflect:

(1) that our experiments lie in a moderate 𝑁 regime (up to
𝑁 = 400), where constant factors, kernel fusion, and imple-
mentation details dominate,

(2) that Nyströmformer pays additional per-layer cost to con-
struct and approximately invert the landmark self-attention
matrix 𝑃2, which is independent of 𝑁 but non-negligible for
small models,

(3) and that Performer introduces extra random-feature projec-
tions and matrix multiplications (through 𝜙 (𝑄) and 𝜙 (𝐾))
which are linear in 𝑁 but currently less optimized than ven-
dor softmax kernels. Despite this overhead, Performer al-
ready scales better with token length than full attention in
our runs, as seen in the relative epoch reductions at 𝑁 = 400
and comparable costs at 𝑁 = 256 and 𝑁 = 100.

(4) We would also like to point out that, as seen in Figure 1,
the Nyströmformer consistently achieves the best trade-off
between accuracy and compute (Top-1 vs. GFLOPs), appear-
ing closest to the top-left corner of the plot. While its ab-
solute epoch time may appear higher in our experiments,
this is primarily because our experiments operate in a rel-
atively short-sequence regime (𝑁 ≤ 400). The full benefits
of the Nyströmformer—in terms of its reduced asymptotic
complexity—are expected to emerge more clearly at much
longer sequence lengths (e.g., 𝑁 ≥ 2000), where the cost
of full attention becomes prohibitive. In this moderate-𝑁
regime, constant factors and matrix operations (like the land-
mark inverse) dominate runtime. Nonetheless, our results

Figure 3: Average epoch time vs. sequence length 𝑁 for each
attention mechanism and the CNN+Linformer hybrid. This
highlights how linear-time methods are designed to gener-
alize to higher 𝑁 , even though constant-factor overheads
dominate in the 𝑁 ≤ 400 regime we could reliably train be-
fore hitting GPU memory limits.

already demonstrate that Nyströmformer achieves the most
favorable accuracy-per-GFLOP ratio among all tested meth-
ods.

For the short-sequence case (𝑃 = 16, 𝑁 = 100), Tables 4 and 7
show that all variants have nearly identical epoch times (∼ 14
seconds) and memory usage (∼ 2.7–4.0 GB), while the accuracy
differences remain consistent. Here, the 𝐿2 cost of full attention is
small enough that efficient variants do not bring substantial speed
gains, but they still match accuracy.

We attempted to extend these comparisons to larger spatial reso-
lutions (e.g., 256 × 256 images with 𝑃 = 4, 𝑁 = 4096 tokens), where
the asymptotic benefits of linear-time attention would be much
more pronounced. However, our single-GPU setup ran out of mem-
ory for full and Nyström attention in this regime, and we could not
complete a clean set of runs with consistent hyperparameters. As
a result, we only validate up to 𝑁 = 400 in this paper. The design
of Performer and Nyströmformer is explicitly intended for these
higher-𝑁 regimes, so we expect their relative advantages to grow
once memory is no longer the primary bottleneck.

Parameter Counts. All Transformer variants have similar pa-
rameter counts (3.4M for Performer with 𝑚 = 64, 3.7M for full
attention, up to 5.3M for the largest Linformer with 𝑘 = 256).
The CNN+Linformer hybrid has roughly 4M parameters. These
differences had negligible effect on runtime relative to sequence-
length-dependent compute.

Implementation notes. We observed that training Linformer re-
quired careful initialization to avoid divergent attention scores (we
initialized the 𝐸𝐾 , 𝐸𝑉 projection matrices to small random Gauss-
ian values). Performer training was stable across all𝑚 tested, and
Nyströmformer training was stable as long as𝑚 was not too small
(we did not test𝑚 < 16). For Nyströmformer, using𝑚 = 32 already
captured enough structure; using𝑚 = 64 gave no significant accu-
racy gain at 𝑁 = 400. This aligns with the idea that the attention

CS 5787, December 2025, Cornell University Dhingra and Ramachandran

Figure 4: Accuracy vs. Training time trade-off for various
attention mechanisms on the ImageNet-10 dataset (patch
size 8, 𝑁 = 400). Each point represents a model variant with
different a different hyperparameter configuration (with its
Top-1 accuracy on the y-axis and training epoch time on the
x-axis (seconds). Methods closer to the top-left are Pareto-
optimal.

matrix rank may be quite low for image patches. We also consid-
ered a variant of Linformer that shares the projection 𝐸𝐾 , 𝐸𝑉 across
heads; it performed similarly, so for simplicity we kept head-specific
projections in reported results.

6 Conclusion
We presented a from-scratch implementation of Vision Transform-
ers with efficient attention mechanisms and conducted a compara-
tive study on image classification tasks. Our experiments showed
that Performer and Nyströmformer can substantially reduce the
memory and time complexity of ViT self-attention while matching
the accuracy of full attention in a small-scale ImageNet setting (Im-
agenette). Linformer, while achieving the intended speedups, strug-
gled to maintain accuracy, especially at larger sequence lengths,
suggesting that its learned low-rank projectionsmay require further
refinement or larger 𝑘 for high fidelity.

In practice, the choice of efficient attention should consider the
sequence length regime: for relatively short sequences (𝑁 ≲ 100),
standard softmax attention is efficient enough and retains a slight
accuracy edge. For longer sequences (𝑁 in the hundreds or more),
Performer offers an appealing balance of simplicity, accuracy, and
memory savings. Nyströmformer is theoretically promising, but
our implementation incurred overhead that outweighed its benefits
at 𝑁 = 400; optimizing this (or using higher-level libraries) could
unlock its potential to give nearly free speedups with no accuracy
loss. Hybrid approaches that restrict attention locally and only
approximate part of the global attention (as in [3]), or that use
convolutional backbones with efficient attention heads (as in our
CNN+Linformer hybrid), are another promising direction to scale
ViTs, potentially combining the strengths of the methods studied.

Overall, our project demonstrates that efficient attention mecha-
nisms are viable for vision transformers and can be implemented in
a unified framework. As larger image transformers become more

common, these techniques will be important to enable training and
inference at reasonable resource costs. In future work, we plan to
extend our comparison to larger datasets (ImageNet-1K) and more
recent methods (such as learnable sparsity or adaptive attention), as
well as explore combining efficient attention with hierarchical ViT
architectures for further gains. A key next step will be re-running
these experiments in a multi-GPU setting to properly validate the
𝑁 ≫ 400 regime where linear-time attention should shine.

7 Appendix
All code used in this paper is available in the following repostory:
https://github.com/pcatattacks/efficient-attention-vit. We acknowl-
edge Xiong et al. [5], who’s implementations of efficient attention
mechanisms (speficially, Performer and Nyströmformer, available at
https://github.com/mlpen/Nystromformer/tree/main) were adapted
for our experiments with vision transformers. Lastly, we acknowl-
edge the use of Github Copilot for debugging our implementations.

Acknowledgments
We thank the CS 5787 course staff for providing computational re-
sources and guidance throughout the project. Their support enabled
the extensive experiments conducted in this study.

References
[1] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song,

Aditya Gane, Tamás Sarlós, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Łukasz
Kaiser, et al. 2021. Rethinking Attention with Performers. In International Confer-
ence on Learning Representations (ICLR).

[2] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is
Worth 16x16 Words: Transformers for Image Recognition at Scale. In International
Conference on Learning Representations (ICLR).

[3] Nishat Ibtehaz andMohammed Islam. 2024. Fusion Attention: Hybrid Local-Global
Attention for Vision Transformers. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR).

[4] Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, and Hao Ma. 2020. Lin-
former: Self-Attention with Linear Complexity. In Advances in Neural Information
Processing Systems (NeurIPS).

[5] Yunyang Xiong, Zhanpeng Zeng, Yunlong Chakraborty, Anyi Li, Mo Yu, Wen
Wang, Jingjing Zhou, Caiming Xiong, and Ion Stoica. 2021. Nyströmformer: A
Nyström-Based Algorithm for Approximating Self-Attention. In AAAI Conference
on Artificial Intelligence (AAAI).

https://github.com/pcatattacks/efficient-attention-vit
https://github.com/mlpen/Nystromformer/tree/main

	Abstract
	1 Introduction
	2 Problem Statement and Related Work
	2.1 Problem Definition
	2.2 Related Work

	3 Data and Evaluation Protocol
	3.1 Datasets
	3.2 Evaluation Metrics

	4 Method
	4.1 Baseline ViT Architecture
	4.2 Standard Multi-Head Self-Attention
	4.3 Linformer: Low-Rank Projection Attention
	4.4 Performer: Random Feature Kernel Attention
	4.5 Nyströmformer: Landmark-Based Attention
	4.6 Hybrid CNN–ViT Embedding Architecture
	4.7 Complexity Comparison

	5 Experiments
	5.1 Implementation and Training Setup
	5.2 Results on CIFAR-10 Baseline
	5.3 Comparison on ImageNet-10 (160160 images)
	5.4 Insights on Efficient Attention and Hybrid Architectures

	6 Conclusion
	7 Appendix
	Acknowledgments
	References

